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We present quantum scattering calculations 
for the collisional relaxation rate coeffi- 
cient of spin-polarized "Rb(/'= 2, m = 2) 
atoms, which determines the loss rate of 
cold Rb atoms from a magnetic trap. Un- 
like the lighter alkali atoms, spin-polar- 
ized *'Rb atoms can undergo dipolar relax- 
ation due to both the normal spin-spin 
dipole interaction and a second-order spin- 
orbit interaction with distant electronic 
states of the dimer. We present ah initio 
calculations for the second-order spin-or- 
bit terms for both Rb2 and Cs2. The correc- 
tions lead to a reduction in the relaxation 
rate for *'Rb. Our primary concern is to an- 
alyze the sensitivity of the "Rb trap loss 
to the uncertainties in the ground state 
molecular potentials. Since the scattering 
length for the u''2*„ state is already known, 
the major uncertainties are associated 

with the X'2*g potential. After testing the 
effect of systematically modifying the 
short-range form of the molecular poten- 
tials over a reasonable range, and intro- 
ducing our best estimate of the second-or- 
der spin-orbit interaction, we estimate 
that in the low temperature limit the rate 
coefficient for loss of Rb atoms from the 
/= 2,m = 2 state is between 0.4 X 10"" 
cm'/s and 2.4 X 10"''^ cm'/s (where this 
number counts two atoms lost per colli- 
sion). In a pure condensate the rate coef- 
ficient would be reduced by 1/2. 
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The recent observation of Bose-Einstein condensation 
(BEC) in magnetically trapped alkali atoms [1,2,3] has 
brought to completion a 15 year attempt to achieve BEC 
in a weakly interacting atomic system [4]. The success 
of BEC in both '^'Rb [1] and "'Na [3] and evidence for 
BEC in ^Li [2] were remarkable achievements brought 
about by the development of laser cooling during the 
past decade, the design of optical and magnetic traps for 
holding cold atomic samples, and most recently the de- 
velopment of evaporative cooling techniques to cool 
atoms below the recoil limit. This experimental success 
has renewed the interest in collisional loss rates for spin 
aligned alkali systems, since the binary and ternary 
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collisional rates will limit the lifetimes of the experi- 
mental condensates. Experimentally, *'Rb is trapped in 
the (/a = 2, ma = 2) state, designated the doubly polarized 
state or the stretched state, for which binary hyperfine 
changing collisions could be the dominant loss process. 
Here /^ and m^ designate the quantum numbers for the 
total angular momentum of the "Rb atom and its projec- 
tion on some convenient space-fixed axis. On the other 
hand, "'Na atoms have so far been trapped in the (/j, = 1, 
OTa = — 1) state, which is theoretically expected to be 
more resistant to binary collisional loss. Hence, the life- 
time of the ^""Na condensate will probably be limited by 
three-body rates, although a condensate of stretched 
state ^^Na atoms may be affected by binary collisional 
loss as well. 

The purpose of this paper is to provide the most 
accurate calculations possible of the binary collision 
rates for all inelastic hyperfine scattering processes 
which can contribute to the loss of spin-polarized 
ground state *^Rb atoms at temperatures (r< 1 |jiK) 
associated with the recent experimental observation [1] 
of Bose-Einstein Condensation (BEC). This spin-relax- 
ation is due to the following processes: 

''Rb(55 ,/a = 2,m, = 2) + **'Rb(55 ,/b = 2, mb = 2) 

-> ''Rb(5s,f,,m,) + ''Rh(5s,fv,nn,). (1) 

Having all *'Rb atoms in the stretched state with m^ =f^ 
is ideal for Bose-Einstein condensation, since inelastic 
collisions between such stretched states have very small 
rate coefficients. The entrance channel in Eq. (1) has a 
spin/=/a +fb of magnitude/= 4. Since the *'Rb atom 
has nuclear spin 3/2, this entrance channel can only 
project onto the triplet a^X*u state of the atom pair 
which has total electron spin S = 1. Consequently a sim- 
ple spin-exchange model of the collision [5,6] shows 
that stretched states do not relax during the collision. 
Our concern is determining the small but significant 
rate coefficient for the trap loss processes indicated in 
Eq. (1) that occur when the degeneracy of the molecule- 
fixed projection \fl\ = 0 or 1 of the S = 1 triplet potential 
is broken by relativistic forces. This splitting leads to 
spin-relaxation. We use standard quantum scattering 
methods to calculate the spin-relaxation event rate coef- 
ficient A'event, dcfincd by Stoof et al. [7], summed over all 
/a', wtas/b, w^b' channels that lead to loss of trapped atoms, 
namely channels for which either/a and/or/b' ¥= 2. Such 
collisions lead to loss of both atoms from the trap be- 
cause of the large kinetic energy release (equal to one or 
two units of ground state hyperfine splitting shared 
equally between the atoms). The total rate of spin relax- 
ation in a Maxwellian gas (number of atoms lost per unit 

volume per unit time) is —2Kg^ where n is the 
density of/a = 2, ma = 2 atoms, since two atoms are lost 
per event represented by Eq. (l)._If a condensate is 
present /Tevcm is multiplied by (2 — ^')/2, where ^ is the 
condensate fraction [8]. 

Two atomic parameters are required to describe the 
separated atoms: the isotopic mass ms? = 158425.8me 
(where m^ is the electron mass = 9.109 X 10 "" kg) and 
the 6834.683 MHz splitting between the/a = 2 and/a = 1 
hyperfine components. Assuming that the molecular hy- 
perfine Hamiltonian can be adequately represented by a 
unitary frame transformation of the asymptotic atomic 
hyperfine Hamiltonians, the accuracy of the loss rate is 
basically limited by the accuracy of the molecular inter- 
actions we incorporate in our close-coupled scattering 
codes. To perform the dynamic calculations, we require 
four accurate molecular potentials ys.fi(R): one defined 
by the ground Z'2*, state with S = 0 and with molecule- 
fixed spin projection /2 = 0; and three defined by the 
lowest a^'X^u state with S=l and spin projections 
(2=0, ± 1. These potentials take the following asymp- 
totic form [9,10,11], 

VodR) ~ - CxcC^^ - (CiR-' + C,R-' + Co/?-'") (2a) 

VUR) ~ + CexcC-^ - (CeR-' + CJi' + Co/?-'") 

+ V''n = o(R) + V'"n -o(R) (2b) 

y,.±,(7?)~-HCexce" (CeR-' + CR-' + C^oR''") 

+V^ >(R) + V" >(R) (2c) 

whereV''\i=o(R) = a^R'^and¥^"^{2= ±i{R)=- l/2a-R'' 
(a ~ 1/137 is the fine structure constant) are the famil- 
iar spin-spin dipole terms that are primarily responsible 
for dipolar relaxation in hydrogen and the lighter alkalis. 
These spin-spin dipole terms have been elegantly treated 
in a series of papers by Verhaar and collaborators in 
Eindhoven [7,12]. The second-order spin-orbit terms 
V^"n which we have included are less well known in 
atomic collision physics, although they are well recog- 
nized as significant terms in molecular spectroscopy 
[13,14]. These terms, which are induced by spin-orbit 
interactions mediated through distant electronic states, 
mimic the effect of the direct spin-spin terms by intro- 
ducing a splitting in the (2 = 0, ± 1 projections of the 
S = I state and can significantly modify the spin-relax- 
ation rates. These terms will be discussed in detail in 
Sec. 5, where we will show that they are of opposite sign 
to the a-R^^ terms and tend to diminish the spin relax- 
ation rate for *'Rb. 
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Our goal in this paper is to systematically assess the 
uncertainties in the spin-relaxation rates that are intro- 
duced by various uncertainties in the molecular parame- 
ters that enter into Eq. (2), and provide realistic bounds 
on the possible range of the loss rate coefficient K^^^m 
that can be expected for Rb,. All our rates are calculated 
using molecular potentials obtained from ab initio 
MCSCF codes employing the highly accurate ab initio 
pseudopotentials of Krauss and Stevens [10] for ^ < 20 
flo (1 flo = 0.0529177 nm), and joined on to the well-an- 
alyzed long range dispersion potentials for the diatoms 
[11] for 7? > 20 flo. Because of the usual limitations of 
pseudopotentials and the typical convergence properties 
of ab initio calculations combined with the extraordi- 
nary demands we make on the required accuracy of the 
molecular potentials at ultra-cold collision energies, 
these potentials can only serve as excellent initial esti- 
mates of the short range portions of the Vs,n{R) poten- 
tials in Eq. (2). 

Collaborative work combining photoassociative spec- 
troscopic data from the Texas group with theoretical 
analysis by the Eindhoven group [15,16] has done an 
excellent job of characterizing the a^X^ potential, 
which controls the entrance channel dynamics for the 
spin relaxation described by Eq. (1). In Sec. 3, we exam- 
ine the sensitivity of the scattering length to variations 
in this potential. We will accept the analysis of the Texas/ 
Eindhoven group and have insured that our potential 
reproduces both the scattering length A| ~ H- 110 «„ for 
the ^'^Rb isotope and A, =« - 300 a^ for the **'^Rb isotope. 
In addition, we introduce a useful new way to associate 
the scattering length with the binding energy of the last 
bound state in an attractive molecular potential. 

In Sec. 4, we demonstrate a strong sensitivity of the 
relaxation rate to the shape of the X^X^ singlet poten- 
tial, when the a^X^ scattering length is kept fixed at its 
known value. In this case the sensitivity is not due to the 
a 'Su* entrance channel, but depends on a final-state 
close coupling effect in the exit channels. The sensitiv- 
ity to the potential leads to a factor of six uncertainty in 
the rate coefficient, which is analyzed using generalized 
MQDT theory [17] and especially the associated half 
collision amplitude version [18] of the theory. We also 
describe the interplay between the spin-spin (SS) and 
second-order spin-orbit (SO) contributions to the relax- 
ation rate. 

We previously had speculated that the SO terms 
would modify Rb spin-relaxation [19]. In Sec. 5 we 
present new ab initio calculations of these SO terms for 
Rb2 and Cs2. We also give our current understanding of 
the uncertainty range of the spin-relaxation rate of *'Rb. 
Finally, a summary of our results is presented in Sec. 6. 

2.    Scattering Theory of Ground State 
Alkali Atoms 

In a field-free collision both the total angular momen- 
tum F =/, H-/b + i=f+ € and the total parity p=±\ 
are constants of the motion. The parity is the symmetry 
associated with the inversion of all electron and nuclear 
space-fixed coordinates through the center-of-mass of 
the dimer. The collision loss rate coefficient K^^^JJL) for 
total collision energy E is expressed in terms of sums 
over F andp involving the scattering matrices S (F,p ,E) 
[8]. Each 5-matrix is derived from a multichannel wave- 
function calculated from standard close-coupled codes 
for a given F,p, and E, using an expansion in a channel 
state basis \F,M,p;£,f,f^,f^), which describes the 
asymptotic properties of the separated atoms, 

^;lim,{E,R)=     S     \F,M,p;y'}F,\(E,R),    (3) 
Y=f'ffifb 

where € is the angular momentum (partial wave) quan- 
tum number of the interatomic coordinate R, / repre- 
sents the magnitude of the channel angular momentum 
f=fi+fb, and y gives the spin channel in which the 
collision starts. The + indicates normal scattering 
boundary conditions for an incoming state in channel y 
and outgoing spherical waves in channels y'. The chan- 
nel states are symmetrized with respect to interchange 
of the identical nuclei. One consequence of this sym- 
metrization is that odd partial waves are missing from 
Eq. (3) for a collision of two/a = 2, ma = 2 ^'Rb atoms. 

In the absence of spin-spin and second-order spin-or- 
bit interactions, the molecular Hamiltonian of two col- 
liding ground state alkali atoms in (ns) orbitals, which 
can be expected to have zero total electronic orbital 
angular momentum L = {£^ + /b) = 0, possesses two ad- 
ditional almost good quantum numbers. These are € and 
/. Although this is not true when one or more of the 
atoms possesses electronic orbital angular momentum, 
such as an alkali in its first excited (np) orbit, it is an 
excellent approximation for the two colliding Rb(5i) 
atoms in Eq. (1). The physical reason is that for L = 0 
there are no electrostatic interactions that cause locking 
of the electron spin angular momentum of the system to 
the internuclear axis. Ultimately, weak spin-spin dipole 
(SS) and second-order spin-orbit (SO) interactions cause 
the total electronic spin S = (s^ + s^) to couple to the axis 
and lead to the small energetic splittings between the 
molecule-fixed spin projections £2 represented in Eq. 
(2). For the moment, if we ignore these latter interac- 
tions the n projections are perfectly degenerate and we 
can easily transform the asymptotic channel states 
\F,M,p;-C,f,f,fb) into a basis defined by the total elec- 
tron spin angular momentum S (S = Sa + Sh) and the total 
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nuclear spin / (/ = h + h), where s^ and Sb are the atomic 
electron spin angular momenta and 4 and 4 are the 
nuclear spin angular momenta (for "Rb, Sa = Sb= 1/2 
and (a = ib = 3/2). This transformation is 

\F,M,p-/,f,S,I)^ 2 V(25+1)(2/+ l)(2/a+ l)(2/b+ 1) 
/a/b 

S I f\ 

In this new representation two adiabatic Born-Oppen- 
heimer potentials, uniquely identified by the quantum 
numbers S = 0 (i.e., the X'%*^ state) and S = I (i.e., the 
a^%*u state), appear on the diagonal of the Hamiltonian 
matrix. In the absence of SS and SO interactions the 
block of S channel states and the block of / channel 
states are diagonal and only couplings involving a simul- 
taneous change in / and S are introduced by the hyper- 
fine interactions. These coupling are constrained to sub- 
blocks which insure that/= / H- S is conserved, and we 
find both / and f remain perfectly good quantum num- 
bers at all distances. Of course, at small distances the 
exchange splitting between the molecular potentials is 
large compared to the hyperfine splittings and hyperfine 
coupling is negligible. However, as we shall see, at dis- 
tances of the order R ~ 20 Oa to 40 a„, the hyperfine 
interaction becomes important and the / <-> 5 coupling 
drives the system back into the asymptotically diagonal 
basis of channel states \F,M,p ;£,f ,f^,fb )■ 

As seen in Eq. (2), both SS and SO interactions pro- 
duce an energy splitting of the fl states which implies a 
locking of S to the internuclear axis. This effect is high- 
lighted by applying a frame transformation of the 
\F,M,p;€,f,S,I) channel basis such that (2 becomes 
represented as a "good" quantum number. However, in 
this new basis / and consequently -f are no longer con- 
served. Fortunately the splitting of the degeneracy of 
the a'Su state is small, and hence/and f still remain 
good approximate quantum numbers. This allows us to 
block the Hamiltonian for a given F andp into subspaces 

of common / and € values. The atomic stretched state 
angular momenta, /a =/b = 2 and m^ = mb = 2, can only 
couple to an /= 4 state, which then couples with the 
f=0 i'-wave to give a total angular momentum F = 4. 
This is the only F value for which there is a stretched 
state 5-wave. The spin-spin dipole interaction can only 
change / by two units, and thus upon examining the 
F = 4, p = + 1 Hamiltonian, we find that the (f= 4, 
f=0) subspace can only couple directly to the (f = 3, 
f=2) and (f=2, /= 2) subspaces. 

Our calculations are carried out with the full compli- 
ment of accessible channels associated with a given 
F,M,p and our rates are obtained with a sufficient sum- 
mation over F,M,p to insure convergence. However, we 
find that at the temperatures relevant to BEC (T < 100 
(joK) only the single set of F = 4, p = + I solutions, 
which involve the close coupling of 20 channels in Eq. 
(3), contribute significantly to the stretched state spin 
relaxation. This is because only the incident s -wave con- 
tributes to spin relaxation, since the contributions from 
incident channels with / > 2 are strongly suppressed at 
these temperatures due to quantum threshold effects. 
Furthermore, of the 20 channels contributing to Eq. (3) 
foT F = 4, p = + 1, and coupled by the 20 X 20 interac- 
tion matrix Uy^yiR), only the five diabatic channels 
labelled y= 1-5 in Table 1 and consisting of the three 
subspaces described above, play any significant role. 

Figure la shows the diagonal interaction potentials 
Uy^y{R) for these five channels. Because of complicated 
curve crossings and strong interactions in the y basis, 
more insight comes when we examine the five a = 1,5 
"adiabatic" potentials Va{R) shown in Figs, la and lb. 
These are obtained by diagonalizing the 5X5 interac- 
tion potential U^yiR) at each R. The five potentials 
never cross and are labeled in order of increasing energy. 
Each adiabatic channel a correlates asymptotically with 
the corresponding y state in Table 1. At short R each a 
potential corresponds to a very good approximation with 
either the X'S*. or a^X*u potentials. Thus, at short R, 
and out to where the exchange interaction term Ccxc in 
Eq. (2) remains dominant, the Va^i(R) potential essen- 
tially mimics the pure X'S*, potential, and the other four 
Va(R) are basically pure a^X*u potentials. 

Table 1. Significant F = 4, p = + I channel states for spin-depolarization rates near 
threshold 

Diabatic (asymptotic) basis Adiabatic Basis 
y    ^   f   fl.   fb Asymptotic energy (mK)        a        Short R label 

12 2 11 
2 2 2 2    1 
3 2 3 2     1 
4 0 4 2    2 
5 2 2 2    2 

656.022 1 '2- 
328.011 2 '2" 
328.011 3 ''t 

0.000 4 ''t 
0.000 5 'X 
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Fig. la. Diagonal potentials for the five most significant F = 4, 
p = + 1 channels. The dashed curves show diagonal elements of the 
y= 1-5 case(e) diabatic interaction matrix Uy^j(R). The solid curves 
show the adiabatic potentials Va(R) for a= 1-5 in Table 1. On the 
scale of this figure the two y = 3,4 and the four a = 2,3,4,5 channels 
essentially track the a'S,*„ potential. The y= 1,2,5 potentials are ad- 
mixtures of Vo.o and V],n and are strongly coupled by off-diagonal 
terms proportional to the exchange term in Eq. (2). The adiabatic 
ff = 1 channel tracks the X'^g potential. 

Fig. lb. Asymptotic correlations of five adiabatic potentials a = 1-5 
in Table 1. 

Solving the set of five close-coupled equations and 
obtaining the 5X5 scattering matrix S('Y,Y) = S(a,a') 
for this abbreviated set of channels is sufficient to quan- 
titatively reproduce the elaborate multichannel calcula- 
tions to within a few percent at all energies below 
100 (xK. What has been defined [8] as the "event" rate 
constant K^^cnt is simply the sum over all inelastic events 
experienced by the incident stretched state channel 
y = a = 4, 

where /x is the reduced mass of the Rb2 dimer, and 
k = w{2ix€l/P') is the wave number of the a = 4 channel 
incident with relative kinetic energy e. At threshold the 
first three terms I5'„,4p a= 1,2,3 vary as k and their 
contribution to /Tevcm approaches a constant at low ener- 
gies. These inelastic elements measure the coupling to 
the exothermic channels and invariably cause loss of two 
Rb atoms from the trap. The fourth term produces dis- 
orientation of the stretched-state atoms which ultimately 
leads to loss from the trap as well. However, as this 
element vanishes as liS'5,4p ^k^, its contribution is negligi- 
ble as A;^ 0 and can be neglected. 

The close coupled equations can be numerically 
solved using either the a or y basis. Since these basis 
sets are asymptotically equivalent, they lead to exactly 
the same 5-matrix. In actual practice the y basis is 
vastly more convenient in solving the close-coupling, 
while the a basis is much more useful in gaining physi- 
cal insight from the results. For example, examining the 
non-adiabatic coupling [17] we find that only channels 
a=\ and a = 2 are strongly coupled, and this occurs 
over a very limited region R ~ 20 ao to 25 flo (see be- 
low). All the remaining couplings are weak and pertur- 
bative. This latter feature will play an important role in 
assessing the sensitivity of the rates to the singlet poten- 
tial in Sec. 4. 

3.    Sensitivity Analysis of the Triplet 
Scattering Length 

All our rates are calculated using molecular potentials 
obtained from ab initio MCSCF codes employing the 
highly accurate ab initio pseudopotentials of Krauss and 
Stevens [10] for R < 20 flo, and joined on to the well-an- 
alyzed long range dispersion potentials for the diatoms 
[11] for R > 20 flo. Since the calculation of ultracold 
collision rates requires extraordinary accuracy of the 
molecular potentials, these potentials can only serve as 
excellent initial estimates of the short range portions of 
the Vs,n(R) in Eq. (2). In particular, they are not accu- 
rate enough to confidently calculate threshold properties 
such as the scattering length. These parameters are de- 
termined by an integration of Vs,n(R) over the entire 
range of R. 

Since we have confidence in the long range parame- 
ters in Eq. (2), we only vary the short range potential in 
order to assess the sensitivity of the scattering calcula- 
tions to these potentials. We have added an adjustable 
harmonic-like short range term to the a^Xu^ and X'Sg"^ 
potentials as follows. 
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V\o{R) = Vo.o(R) + Co(R - R^y-       R<R,o = 7.89032 a, 
(5a) 

V'\,o(R) = VuniR) + C,(R-R,,f     R<R,, = 11.66^3 a, 
(5b) 

where Eq. (5) is only applied at distances smaller than 
the indicated equilibrium internuclear distances for the 
attractive singlet and triplet potentials respectively. Note 
that the functional form in Eq. (4) is chosen arbitrarily 
and has no physical significance; other short-range 
forms could be used with equal effect. In particular we 
want to show that by choosing an appropriate value for 
C[ in Eq. (4b) we insure that the associated V[,n(R) 
potentials give a scattering length of 110 Oo as suggested 
by the joint theoretical-experimental analysis of Boesten 
et al. [16]. 

Our initial fit to the ab initio calculations [10] for the 
a^2"^u potential happened to support 38 vibrational 
levels. The last level v = 37 has a binding energy 
of - 1.45618 X 10"' au (1 au = eVflo = 4.359748 X 
10 '* J, where e is the electron charge), and a positive 
scattering length of 21.6 Oo- This corresponds to the 
point at C| = 0 in Fig. 2 where we show the variation in 
scattering length as we systematically vary C\ in Eq. 
(5b). The figure shows that the scattering length A| is 
extremely sensitive to the short-range portion of the 
potential. The scattering length is defined by the i-wave 
threshold behaviour of the elastic scattering phase shift 
^1 ^ — MI in the limit that the asymptotic wavenumber 

^ 
an 
C 

Si, 

_ N, 1 ^^ 

T-' ...J 
 ,, 

397r 

387r X, 

-6-4-2      0       Z       4 
Cj (10-5 au a^-S) 

Fig. 2. The variation of *'Rb2 scattering length A| for the entrance 

i-wave channel incident on the a'2*u potential, as a function of the 

short range C] parameter, extracted from the wavefunction at 

e/ke = 0.1 nK (full circles). The solid line through the points gives the 

fit of Eq. (6). We also plot the threshold values v(0) of the bound state 

phase as we vary C] (full squares). The modular TT values of 

V(£„) = nil identify the bound state eigenvalues. As the last bound 

state €„ eigenvalue approaches zero the predicted scattering length 

passes from a large positive value to a large negative value as the level 

"pops" out of the potential. This occurs at about C\ = — 2.6 X 10"'^ 

au/u„^ for "Rbj where v(0) -^ 38-71. 

k goes to zero (^^k^/lij. = e with e the collision energy). 
It is well known [20] that the actual value and the sign 
of AI is critically dependent on the position of the last 
bound state that can be supported by a given potential. 
This in turn is related to what we like to call [17,21] the 
bound state phase V(K), which is defined for negative 
energies e = —^^K-llfx which lie below the threshold at 
e = 0, and where K in turn is defined as a continuous 
positive real variable. The modular-TT value of the bound 
state phase V(K„) = MTT locates the position of the «th 
vibrational eigenvalue [21,25], such that e„ = —A-K^'I 

Ijx. Actually the deviation of the threshold value of v (0) 
from modular-TT is a useful measure of the last bound 
state position. This quantity plays a prominent role in 
many descriptions of threshold behaviour (see Stwalley 
[22], LeRoy and Bernstein [23] and the Eindhoven 
group [16]), where it has been denoted as VD and is 
sometimes called the effective vibrational quantum 
number at the dissociation limit. For our initial fit with 
Ci = 0 we found v(0) = 37.699541TT. This quantity in- 
creases or deceases monotonically as we systematically 
make the potential more or less attractive by varying d 
in Eq. (4b). At 9.75 «„, the zero energy turning point of 
the a^X'^u potential for C| = 0, a value of d = 
± 5 X 10"^ au/flo^ produces a ± 50 cm"' change in the 
potential. For comparison, the triplet state potential is 
204 cm"' deep at its potential minimum R^i- 

Figure 2 shows that the scattering length as a function 
of the C[ shift parameter passes from plus to minus 
infinity as the last bound state is pushed out of the 
potential. The position of the singularity is easily lo- 
cated by examining the threshold behaviour of the bound 
state phase v(0). We see that this quantity approaches 
3817 just as C| approaches — 2.6 X lO"' au/ao' and A| 
passes through infinity. In fact a nice analytic relation- 
ship exists between the scattering length A and v(0), 

. dv 
OK 

cot + cotv(0) (6) 

where  e = 
A^ 

V{K) = V(0) + 

2fji 

dv 
dK 

and the derivative is defined by 

K. The parameter s in cot('n'/ 

(s — 2)) is defined by the leading asymptotic power law 
- CJR' for the potential. Both the a'S^ and the X'S\ 
potential have as the leading term C(,R'^ and we have 
coiiitlis — 2)) = 1. (Instead of the pure a ^X^*^ potential 
we actually prefer to use the adiabatic potential desig- 
nated as a = 4 in Table 1, in which case the lower order 
a^R^^ terms in Eq. (2b) and (2c) are rigorously removed 
by the diagonalization of the interaction matrix and do 
not contribute to the threshold behaviour of this s -wave 
channel). If we evaluate v (e) at an eigenvalue € = €„ then 
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v(0) ■ MIT 
dv 
dK 

Kn = n TT + 5„. In the special case, as 

6„ ^ — 0 and the last bound state lies just below the 
dv 

dissociation limit,  such that  S„ 
dK 

K„ « 1   and 

tan5„ ^ 5„, we obtain the usual perturbative expression 
(Ref. [20] p. 48) for the scattering length 

flv r,  1] :==:    - 1 +ir 
dK I    s„i 

—> 
dv__\_      J_ 
dK 8„ K„   ■ 

(7) 

Although the conventional derivation of this expression 
is limited to a potential with a single bound state, we 
find perfect agreement with this limiting behavior even 
for wells supporting many bound states. 

Actually, if we have a situation where v (0) is not quite 
ready to support then* bound state, i.e., v(0) = niT — 8„ 

— dv   — 
such that 8„ = —— (K„) « 1, then we can visualize a 

dK 

' 'pseudobound'' state lying just above the dissociation 
limit with an "eigenvalue" e„ = + ^^Kfjl/x. In the limit 
where tan v(0) ^ — 5„ we obtain an expression which 

complements Eq. (7), A ^ — ^ , and predicts a nega- 
K„ 

five scattering length whenever a pseudobound state lies 
just above the dissociation limit. This behavior is well 
substantiated, and quantitatively confirmed, by the re- 
sults in Fig. 2. 

Numerical studies show that the bound state phase 
dv 

does indeed vary as v(/<:) = v(0) + ^— K near threshold, 
OK 

dv 
and furthermore the quantity —— required in Eq. (6) is 

dK 

basically an asymptotic property that only depends on 
the long-range potential, and is totally insensitive to 
variations in the short range potential, such as those 
introduced by the shift parameter C|. From these data 

78 flo- Using this estimate we 
dv 

we estimate that T— • 
dK 

have plotted Eq. (6) as the solid curve in Fig. 2 and find 
perfect agreement over the entire (modular li) range of 
v(0) with the calculated points. Note that this expression 
also predicts the exact locations of the zeros in the 
scattering   length,    which    are    always    located   at 
v(0) = MTT H- 0.7517. It is interesting to note that over the 
modular TT range the scattering length is predicted to be 
positive for 3/4 of the range, and negative for only 1/4. 
This means that, if we know nothing about the short 
range potential, we can at least predict there is a 3:1 
probability that the scattering length will be positive! 
The functional form of Eq. (6) was also confirmed for 
an asymptotic R^^ by setting Ce = 0 in Eq. (2), such that 
COt(T7/(5 - 2)) = C0t(TT/6) = V3. 

If we choose C| = 3.128 X 10"^ au/a,,' we obtain a 
scattering length A|(87) = -i- 109.1 Co and a threshold 
value of V87(0) —> 37.376117, which predicts 38 bound 
vibrational levels with a last bound state at £37 = 
— 2.947925 X 10 ' au. This choice is made to conform 
to the scattering length obtained by the Texas/Eindhoven 
group [15,16]. Further confidence is obtained from Fig. 
3 where we compare the scattering lengths for the *'Rb 
and the ^^Rb isotopes. In calculating the two scattering 
lengths, the only difference is the mass of the two iso- 
topes. We see that at the same value of C| the calculated 
scattering length A|(85) = — 309.1 Co for ^""Rb is in good 
agreement with [15,16]. In addition, the threshold value 
V85(0) = 36.936717 predicts 37 vibrational levels with a 
last bound state at £36 = - 3.305245 X 10"** au. 

1000 

in 

1 

-500 

-1000 

,.-■•■" 

P 

__^ 

'.   1   y8,(0)=387r 

-^—f 1 ^ 

/               i^g5(0)=37Vr 

I . r- 

f 

i 

■ ^ 

-^ 1 '  
-6-4-2 0 2 4 6 

Cj (10-5 au 3^-2) 

Fig. 3. Scattering lengths as in Fig. 2, for the "Rb(solid circles) and 
*'Rb(open circles) isotopes. These are evaluated for the same a^'S,*^ 
potential, using the appropriate mass for each isotope. For all future 
calculations we use C| = 3.13 X 10"' au/uo^, indicated by the vertical 
arrow. This choice yields scattering lengths A|(87) = 109.1 u„ and 
Ai(85) = — 309.3 Uo, as prescribed by the analysis given by the Texas/ 
Eindhoven group [15,16]. 

One final confirmation of the validity of the a'Su"^ 
potential we are using is obtained by examining the 
c?-wave shape resonance structure defined by the adia- 
batic channel a = 5 in Table 1. This corresponds to an 
incident channel which correlates with the triplet state at 
short distance, and correlates with the/a =/b = 2 atomic 
states at large distance entering with an /=2 partial 
wave. This gives rise to the centrifugal barrier shown in 
Fig. 4, with a barrier height of 420 (joK. The radial 
wavefunctions/a=4(/?) andfa=s(R) are shown in Fig. 5 for 
four incident kinetic energies: 100 (xK, 200 (xK, 350 
(joK, and 500 (xK. These/„ (7?) are the single-channel, 
energy normalized elastic scattering wavefunction asso- 
ciated with the Va(R) adiabatic potential. Boesten et al. 
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Fig. 4. The £=2 centrifugal barrier for the a = 5 channel, which 

asymptotically correlates with the a 2*u potential. The four energies 

indicated will be used in Fig. 5. 
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Fig. 5. Energy normalized continuum wavefunctions for the adiabatic 

ff = 5 channel for energies € = 100 (xK, 200 (xK, 350 (xK, and 500 JJLK 

(dashed lines) and for the adiabatic a = 4 channel for energy £ = 350 

(JLK (solid line). The adiabatic a = 5 channel exhibits J-wave shape 

resonance structure with maximum amplitude enhancement near 

€„ax = 350 [xK. 

[16] have concluded that there is a shape resonance 
enhancement of the photoassociation from channel 
a = 5 relative to the a = 4 channel with incident / = 0. 
The solid curve shows the a = 4 wavefunction for 350 
\iK. The a = 5 channel amplitude increases with energy 
up to 6 =« 350 (xK, after which it decreases. One would 
infer from these plots that the d-wave shape resonance 
is very broad with a ' 'width'' extending from 200 (xK to 
500 (xK. This behaviour is consistent with the analysis 
given in reference [16]. 

4.   Sensitivity of Loss Rates to the Singlet 
Potential 

As we systematically varied the short-range X'S^g 
potential by varying Co in Eq. (5) we find a surprisingly 
large, and seemingly erratic variation in the stretched 
state loss rate coefficient. The spin-relaxation rates are 
determined by the very small S(a,4) matrix elements, 
which typically have a magnitude of 10 "*. We found that 
the variation was intimately associated with the varia- 
tion of the large \S(a = l,a = 2)P element shown in Fig. 
6. As seen from Fig. 1 and Table 1, this 5-matrix ele- 
ment measures the probability for the /a,/b = 
1,2 -^fa,fh =1,1 transition. The coupling which deter- 
mines this transition probability is the short-range ex- 
change potential, which causes the strongest and only 
non-perturbative inelastic event associated with the 
channels in Table 1. Since 5(1,2) is evaluated at a total 
energy determined by the a = 4 entrance channel, 
namely 0.1 (xK above the a = 4 channel threshold, the 
asymptotic kinetic energies in channels a = 1 and a = 2 
are 656 mK and 328 mK, respectively (see Table 1). 

0.8- 
\ "'-■- 

i 0.6- 

: 

1 
': 

, i4p)/7T -120.75 

1 / 
"'-,, 

.• 
0.4- 

0.2- 

'; 
.-••K 

,.•' 
/ 

- 25 -20 -15    -10 -5       0        5        10 15 20      2i 

Co (10- O 
Fig. 6. Variation of IS12I" (for a total energy e/kg = 0.1 (xK incident in 

channel 4) as a function of the short-range Co parameter (dashed line) 

and variation of v(0) as a function of the same parameter (dotted line). 

At Co = 8.0 X 10"' au/uo" the quantity v(0)/'7r = 121 and the X'2+g 

potential supports exactly 122 vibrational states. At this point the 

singlet scattering length passes through infinity. However, ISi2l^ varies 

smoothly through this region, because channels 1 and 2 have high 

asymptotic kinetic energy, well away from threshold. 

Before we can understand the strong influence of the 
Z'S*g potential on the perturbative S(a,4) elements we 
must first examine the profound effect of this potential 
on the behaviour of 5(1,2). The change to the short 
range potential is sufficient to make small displacements 
in the nodes of fa=[(R) in the coupling region which is 
important for determining 5(1,2), but it is not immedi- 
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short distances by increasing Co, with nodes being sys- 
tematically pushed to larger distances, Fig. 9 shows that 
A'event tracks the associated values of I5'(1,2)P with K^^cm 
varying by roughly a factor of 4. The figure also shows 
that several of the individual components contributing to 
the spin-relaxation show similar qualitative variation 
with differences in detail. 

-25   -20 

Fig. 9. I5'i2l and KCVCM versus the short-range Co parameter for the 
ground X'2*g potential. The figure shows the strong correlation be- 

tween the two quantities. The correlation with specific components 

^event(22,22 —>/„ma, /bnib) are also shown: (a) /am„, /bmb= 11,11; 

(b)/.m.,/bmb = 22,10; (c)/„m„/bmb = 21,11; (d)/.m.,/bmb = 22,11. All 
rate coefficients have been divided by 2 X 10"'^^ cm"'/s in order to 

place them on the same scale as the dimensionless IS12I". 

Figure 10 shows the behavior of K^y^m with respect to 
the variation in 15(1,2)1^. We show the dependence of the 
stretched state rate coefficients on the X'l^g potential 
for three different situations. The SS-only curve gives 
^event whcn wc onty include the usual spin-spin splitting 
which varies as 3a^/2R^. The SO-only curve shows the 
very small rate coefficient, almost independent of 
S(l,2), that results if the SS splitting is removed and 
only the short-range second-order spin-orbit splitting is 
included. In Sec. 5 we will show that the SO-only con- 
tribution primarily occurs at short distance, R <20 Uo, 
where significant molecular interactions can occur. 
Consequently, the dependence of the SO-only rate coef- 
ficient on I5(1,2)P is minuscule. Finally the SS-plus-SO 
curve shows the rate coefficient when both SS and SO 
interactions are included in the close-coupling calcula- 
tion. This curve demonstrates up to a factor of two 
reduction in the rate coefficient when compared to the 
SS-curve 

The rate coefficients in Fig. 10 are double valued as 
a function of 15 (1,2)P except at the extremes of the range. 
This property can be traced to Fig. 9, where we have 
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^1,21' 

Fig. 10. Rate coefficient ^„eni versus I5'i2l as Co is varied for the 

X'2*g potential. The variation of Co is sufficient to "pop" two bound 

states out of the X'2*g potential. Three such curves are shown. The 

curve labeled "SS only" includes the spin-spin (SS) interaction only. 

The lowest curve labeled ' 'SO only'' includes the second-order spin- 

orbit (SO) interaction only. The middle curve labeled "SS plus SO" 

includes both the SS and SO interactions. 

followed I5'(1,2)P over a range of Co that changes vCOyir 
by unity and "pushes" one bound state out of the X'S^g 
potential well. We find two identical values of 15(1,2)1" 
in this interval. The second value occurs when the /i 
function is shifted by approximately half a deBroglie 
wavelength in the peak region of Q12, thereby maintain- 
ing the same value of the distorted wave integral for 
I5'(1,2)P (see Fig. 8). This changes the sign of 5(1,2) but 
results in the same I5(1,2)P. However, this change in 
sign results in slightly different interference effects in 
the evaluation of 5(a,4) and thus /Tevcnt at distances be- 
yond R ~ 26 flo, as we will discuss below. Actually, in 
Fig. 10 we varied Co enough to ' 'eject'' two bound states 
from the potential, and, for a given resultant I5(1,2)P the 
rate coefficients in Fig. 10 can not be distinguished. 

At the extrema of K^^ent in Figs. 9 or 10, it is possible 
to associate a single Ao scattering length for the X'X*g 
potential with the particular I5(1,2)P value. This is not 
possible away from the extrema, since there are two 
values that correspond to the same K^ycm- The minimum 
in /Tevcnt corresponds to a scattering length for the X'S*. 
potential of Ao = H- 95 Oo and the maximum corresponds 
to a value of AQ = H- 54 AQ. If the scattering length were 
measured to be near one of these values, then the relax- 
ation rate will be near one of its extreme values. 

We will now present a qualitative argument why vary- 
ing the magnitude of 5(1,2) affects the magnitude of the 
spin-relaxation rate involving the 5 (a ,4), a ¥= 4, matrix 
elements. Since the coupling is weak it is an excellent 
approximation to represent these elements as follows: 
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ately obvious why this leads to such large variations in 
the above-threshold 5(1,2). Fig. 6 shows 15(1,2)1^ varies 
from a minimum of 0 at Co ~ — 9.4 X 10"' au/a,,^ to a 
maximum of 0.834 at Co «= - 16.4 X 10'^ au/a,,-. 

This variation is best understood by considering the 
matrix   element   of   the   radial   coupling   operator 

d 
212(^) TT; [17] between the adiabatic states a= 1,2 in 

Table 1 and Fig. 7. In the first order distorted wave 
approximation (Ref. [20] p. 349, and Refs. [26 and 27]) 
the S(l,2) matrix element is proportional to the integral. 

5(1,2) cc JdRMR)Q,,2(R) ■^f2iRX 

where Qi2(R) is determined by the 7?-variation of the 
orthogonal 5X5 matrix My^iR) which diagonalizes the 
diabatic interaction matrix, U(R) =M(R)V(R)M(R), 
such that 

QniR) = E,=,.5 ^i.(^) dM2,j(RVdR. 

Not surprisingly we find the coupling is highly localized 
in the vicinity of/? =« 22 (see Fig. 7) where the spin-ex- 
change splitting between the singlet and triplet potential 
in Eq. (2) becomes comparable to the hyperfine splitting 
of the atoms. Although Qii causes strong nonadiabatic 
mixing between channels 1 and 2, the distorted wave 
approximation above is suitable for the qualitative argu- 
ment we make below, even though it is not suitable for 
quantitative calculations. 

> 

50- 

0- 

-50- a=2 ."7 
-100- / / / 
-150- 

■■ / 

/a=l \    / 
/ Q,^ Oarb. units) 

200- ■■•....•■' 

250- 

300-  ' 1 '  
10 18 

R(ao) 

22 26 30 

Fig. 7. The adiabatic potentials for channels a = 1 and a = 2 together 

with the non-adiabatic coupling operator (in arbitrary units) between 

these channels. The latter is well localized in the region of 18 uo < 

R<26 Uo, where the exchange splitting between the X'2*, and a"'2*„ 

potentials becomes comparable to the hyperfine splitting. 

Changing the singlet potential has a negligible effect 
on the adiabatic/2(/?), which is shown by the solid curve 
in Fig. 8 and primarily portrays a pure triplet state, at 
least up to the vicinity of strong coupling near 22 OQ. 

The two different short range singlet potentials, associ- 
ated with the indicated minimum and maximum 
I5'(1,2)P in Fig. 6, are used to obtain the two different/i 
functions which we designate as/i ,ni„ and/i ^ax in Fig. 8. 
Note the structure of these functions in the vicinity of 
the peak of the non-adiabatic coupling operator Qii- The 
fi.min function has an almost perfect overlap with the f, 
function. Since the complete non-adiabatic operator is 
equal to 2i2 times the radial derivative d/dR this perfect 
overlap implies a very poor overlap between /i and 
dfi.miniRydR, and therefore implies that the distorted 
wave integral should be quite small. In fact, for this case 
our exact close-coupling results yield 15(1,2)1^ = 
0.000017 (presumably by varying Co slightly we could 
have found a perfect cancellation with 15(1,2)1^ = 0). The 
second function /^max in Fig. 8 is phase shifted with 
respect to/i, implying improved overlap between/i and 
dfi.maxiRydR and a larger distorted wave integral. For 
this case our close-coupling predicts the maximum 
I5(1,2)P = 0.83. 

200 
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-200 
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l,tnin 

16 
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22 
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'' Qj o (arb. units) 

2H 
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26 28 

Fig. 8. The adiabatic /2 wavefunction (solid curve) and the adiabatic 

wavefunctions/i max (dotted curve) and/i „,!„ (dashed curve). The latter 

were calculated using the singlet shift parameters Co = — 16.4 X 10"^ 

au/uo^ and Co = — 9.80 X 10"' au/uo^, which produce the maximum 

and the minimum inelastic I5i2p elements in Fig. 7 respectively. The 

Q]2 operator (in arbitrary units) is also shown, and locates the region 

of strong non-adiabatic coupling between channels 1 and 2. 

Our initial fit to the ab initio calculations [4] for the 
'2"^g potential, combined with the 'S^u potential with a 
scattering length A| = 109 Oo prescribed by Ref. [16], 
just happened to yield a value of 15(1,2)1" = 0.0731. 
When the 'S*, potential was systematically modified at 
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SiaA)cr.X{F- \QaAR)^\n) (8) 
d     X 

X   —d 

0   X 

X   0 
(10) 

where Fa'a are defined in the same manner as in Eq. (3), 
but now in the adiabatic channel basis and with an 
outgoing state in channel a. Each column vector in the 
matrix F(R) defines the radial components of a five- 
channel close-coupled outgoing wavefunction for each 
of the adiabatic channels a= 1,5. The function/J repre- 
sents the incoming wavefunction of the a = 4 adiabatic 
potential of Fig. 1. This can be viewed as a generalized, 
multichannel version of the Distorted Wave Approxima- 
tion [20,26,27]. The Qa;4 matrix elements introduce the 
weak spin-dependent coupling between adiabatic chan- 
nels 4 and a'. 

At short distances, to the left of the strong coupling 
region in Fig. 8 the solutions F{R) are simply propor- 
tional to the 5X5 diagonal matrix of adiabatic refer- 
ence functions /„ 

F-(R)^ f(R)e-'f = 5„,„/„(R)e-'««    for R<20 a,. 
(9a) 

Applying generalized MQDT theory [17] and its associ- 
ated half collision amplitude [18] to the outgoing multi- 
channel functions at distances beyond about R = 26 a^, 
the exact close-coupled wavefunctions can be repre- 
sented rigorously as follows 

F-(R) oc \f(R) + g(R)Y] (1 + /F)-'e- for R>26 a.u. 
(9b) 

where, especially if one uses an adiabatic representa- 
tion, the diagonal elements d are generally negligible. 
For the strong coupling case, 15 (1,2)1 = E( 1,2)1 can have 
a maximum value approaching unity. 

For the simple model used here, we use x = 1 for the 
strong coupling case and x = 0 for the weak coupling 
case. For these two extreme cases the function F^ in Eq. 
(9b) takes a simple form. For the two channels a = 1 and 
a = 2 the relevant matrix elements of F^ are: 

''2i 

F  = 

x=l,    15(1,2)1=1   (11s) 

/,e-'^'      0 
.   0      /,e-'&. 

x = 0,    15(1,2)1 = 0     (llw) 

We designate these two cases "s" and "w" respec- 
tively, for strong and weak inelastic scattering probabil- 
ity measured by 5(1,2). Using these limits in Eq. (8) we 
find 

5(1,4) ^ - ^ (/?re-'f'iy,,4!/4) + ^ {h2C--('\V2.4\f4) 

5(2,4) « - ^ (/?Je-'&iy2,4!/4) + 2 </ire-'&iy,,4!/4)   (12s) 

where g(R) = Sa,aga(R) and ga(R) is an irregular solu- 
tion for the adiabatic Va(R) potential. Alternatively, this 
may be written using running wave reference functions: 

^' = 2 
h* - h-T e-'f,    h-=g±if^k-"\-'^'"'*^ 

(9c) 

where the real symmetric Y matrix is related to the 
close-coupled scattering matrix 5 = e'^e'^ = e'^(l + iY) 
(1 — iT) 'e'^. The only F matrix element of any magni- 
tude in this ultracold five channel system is Fi^; there- 
fore, we need only consider the a = 1 and 2 channels 
and we can reduce F to a 2 X 2 matrix for these two 
channels. For the weak coupling case in Fig. 8 even the 
Fi,2 element is negligible and the structure of F(R) 
remains diagonal as in Eq. (9a) for all R. However, if the 
chosen X'1^, potential yields a large 5(1,2), the struc- 
ture in Eq. (9b) can strongly influence Eq. (8). It is not 
a bad approximation [17] to represent a 2 X 2 F matrix 
as follows. 

5(1,4) ^ </■, e-'f'iy,,4!/4) 

5(2,4) oc (f, e-'^V.Jfd (12w) 

The radial functions/i and/2 are just the elastic scatter- 
ing standing waves shown in Fig. 8 and oscillate strongly 
against the standing wave /4 defined by the incident 
channel. Thus, we expect small values for the matrix 
elements in Eq. (12w). In the strong coupling regime the 
matrix elements involve the overlap of/4 with pure out- 
going (or incoming) running waves with amplitudes 
which do not oscillate with R, and we can easily under- 
stand why the matrix elements in Eq. (12s) are much 
larger than those in Eq. (12w). The enhancement of the 
spin-relaxation rate coefficient in the presence of strong 
final state interactions is well demonstrated in Figs. 9 
and 10. 

Further insight into this final state effect can be 
gleaned by evaluating ^evem while systematically limiting 
the range of the spin-spin coupling in Eq. (2). We do this 
by assuming the fine structure constant a has its usual 
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constant value 1/137 up to some cutoff distance /?cut and 
then vanishes identically for R > R^ut- The results of such 
a study are shown in Fig. 11. The solid curves show the 
result using the X'l^g potential which yields the maxi- 
mum I5'(1,2)P. In this case we expect Eqs. (10s) and 
(11s) to prevail at distances larger than the peak of the 
Q[2 operator, which is shown by the dotted curve in Fig. 
11. The dashed curves show the corresponding results 
for the minimum 15(1,2)1^ case, for which Eqs. (llw) 
and (12w) should be valid for all distances. There are 
two sets of curves. Each set has one line with the SS 
interaction only and one with our best estimate of the 
second-order spin-orbit terms included. Since these SO 
terms are short ranged and their principle contributions 
occur at distances to the left of the Q12 operator, we did 
not apply a cutoff to these terms. 

20 

solid= max |Sj op 

dash= min |S, J 

SS only 

80 120 200 

Fig. 11. K„cat versus the artificial cutoff parameter Rcuiss of the spin- 

spin interaction. The V^^(R) coupling is set to zero for R > RCM- Kcycat 
is shown for the two Co values which yield the largest (solid lines) and 

smallest (dashed lines) inelastic I5i2p. Two curves are shown for each 

choice of Co. One corresponds to including the SS interaction only, 

and the other corresponds to including both the SS and SO interactions 

(the SO coupling in not cut-off). The arrows show the values for 

Both dashed curves in Fig. 11, associated with the 
standing-wave weak coupling solutions in Eq. (llw), 
have achieved their asymptotic values by about R ~ 
40 ao-60 flo- Any possible contributions to the loss-rates 
beyond this region are quenched by standing wave oscil- 
lations in the matrix elements Eq. (12w). On the other 
hand, as shown by the behavior of the pair of solid 
curves, running wave terms in the strong field Eq. (12s) 
continue to add to the rates out to distance beyond 
R = 200 flo and finally reach full convergence at about 
R « 300 a„. 

We now discuss the interesting effect that the total 
loss rates are decreased when we include the y^° terms 
as well as the V^^ terms. The distorted wave approxima- 
tion in Eq. (8) implies that the S(4,a) 5-matrix elements 
can be separated into an SS and an SO term. The loss 
rate depends on the square of 5-matrix elements: 

l^ss ^ ^so|2 ^ i^ssp ^ i^sop ^ ^ss^so* ^ ^ss-^so^ 

The first two terms sum the individual contributions to 
the rate, whereas the last terms exhibit the interference 
between them. Figures 10 and 11 show that l^^"!^ is 
independent of the strength of the exit channel coupling 
measured by I5(1,2)P and is always small compared to 
\S^^\-. On the other hand, \S^^\^ does depend very 
strongly on the strength of the exit channel coupling. 
Obviously the interference effect is more significant for 
the case of weak SS coupling than for the case of strong 
SS coupling. In the former case, K^^cm is decreased by a 
factor of 2 when SO coupling is included, whereas in the 
latter case, the decrease is only 20 %. Including the SO 
terms causes a decrease in /Tevent, since the SO coupling 
has an opposite sign from the SS coupling, as discussed 
in the next section. 

5.    Evaluation of Second-Order Spin-Orbit 
Coupling 

The doubly spin polarized atomic states on the left 
hand side of Eq. (1) can only be relaxed by the weak 
coupling between the two electron spins. Two terms, 
shown in Eq. (2), contribute to the effective spin-spin 
interaction Hamiltonian: the direct spin-spin dipole in- 
teraction V^^n(R), varying at long range as 1/R^, and the 
indirect second-order spin-orbit interaction V^"n(R). 
The latter originates when the atomic charge clouds 
overlap as a molecule is formed, and the interaction 
between the ground state spins are modified due to 
couplings mediated through distant excited electronic 
states of the molecule. These interactions are well 
known in molecular spectroscopy and mimic the direct 
spin-spin coupling for a 'S state [13,14]. The reason 
these interactions mimic spin-spin coupling is that they 
split the (2 = 0 and ± 1 components in a similar manner 
as the direct spin-spin terms. For heavy species like Rb 
and Cs we will see that these indirect terms can be much 
larger than the V^^n(R) term at short distances and 
strongly influence the spin-relaxation rate. 

We have calculated ab initio molecular spin-orbit ma- 
trix elements to obtain estimates of the second-order 
spin-orbit correction terms V^'^niR) in Eq. (2). For the 
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a^'Su* state these terms are mediated through distant 
electronic states of '11^, ^11^, ^U^, and ^Xu' symmetry. 
We calculate the 7?-dependent spin-orbit matrix ele- 
ments for these states using all-electron wavefunctions 
for the molecular states generated by standard ab initio 
methods. The second-order interaction for the a^X^ 
state is dominated by the matrix elements 
(fl'S:,filHso(^)P'-"n„,« ) involving 'n„ and 'n„ states 
which correlate to the first excited ^S + "P atomic 
asymptotes. In this case the second-order coupling term 
due to a specific ^^*'n„fl state takes the form [14] 

V^{S,R) = b'%S,n)Ps{R) (13a) 

where 

feso(5,0) = 0,    ^^°(5, ±1)=1    for 5 = 0      (13b) 

b''%Sfi) = 2,    fe'°(5, ±1)=1    for 5=1      (13c) 

and 

Ps{R)- 
K'X,«= |l//sol    * Hufl^ l)l 
ve'*'j\^,R) - veSu,R) 

(13d) 

Here Hso(R) is the electronic spin-orbit coupling opera- 
tor and fl = A + X, where A is the projection of the 
electronic orbital angular momentum and X is the pro- 
jection of the electron spin angular momentum on the 
internuclear axis. Since the important aspect of the sec- 
ond-order spin orbit coupling for dipolar relaxation is 
the splitting it introduces between /2 = 0 and ± 1 com- 
ponents of the ^Xu^ state, we represent the second-order 
spin-orbit couplings as an "effective" spin-spin cou- 
pling term Vn'iR) as follows. 

Vh% m=^[Pi(R)-Po(R)] 

(R)=-l[P,(R)-Po(R)]. (14) 

Since Ps(R) decays exponentially to large R, and its 
magnitude at short R is small compared to uncertainties 
in the short range ^Xu^ potential, we can ignore the 
mean contribution of these interactions which equals 
[3P[(R) + Po(R)]/2 and assume that our adjustment of 
the ^Xu* potential to fit the experimental-theoretical esti- 
mate of the scattering length in Sec. 3 actually incorpo- 
rates this mean spin-orbit contribution. 

Figure 12 shows our calculated Po(R) and Pi(R) for 
Rb2 and Cs2. The b'Tlu state, which is energetically clos- 
est to the ^Xu^ state, has the largest coupling, and Pi is 
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Fig. 12. Calculated second-order spin-orbit coupling parameter of 
Eq. (lid) as a function of the internuclear separation R. The circles 
show the contribution from the first excited '!!„ state, and the squares 
show that from the 'Du state. Solid points are for Rb2 and open ones 
for Cs2. The dashed line shows the difference between the fi = 0 and 
IfJI = 1 components of the spin-spin interaction. 

an order of magnitude larger than PQ. Figure 12 also 
shows that Po and P| have a much shorter range than the 
l/R^ spin-spin term. To a good approximation we find 
we can fit the numerical ab initio results to the following 
expression. 

v%=o(/?) = -2y^ ^{R)- CO'Q -B(R-Rs) (15) 

where for Rb, C = 0.001252 au, B ■■ 
Cs2 C = 0.02249 au, B = 0.830 a„- 

both; here C is given in au (1 au: 

: 0.975 a„"', and for 
and Rs= 10 Uo for 

: - = 4.359748 X 

10"'* J). Note that Vnio is negative compared to the 
positive a^/R^ spin dipolar term in Eq. (2b) and at about 
R ~ 10.33 flo these two terms exactly cancel in the case 
of Rb2. The same is true for Eq. (2c). Since it is the 
difference between the potentials from Eqs. (2b) and 
(2c) that gives rise to spin-relaxation, and the overall 
magnitude of these differences is reduced by the addi- 
tion of the spin-orbit interaction, we might anticipate the 
spin-dipolar relaxation rates will be reduced accord- 
ingly. However, we should emphasis that although this is 
true for spin aligned Rb, where the two contributions are 
of similar magnitude, the opposite effect appears likely 
for Cs, since the magnitude of the second-order spin-or- 
bit term for Cs2, although still negative, is much larger 
than the spin-spin term. The overall effect of the spin- 
orbit term in Cs2 is to increase the spin-relaxation rate 
relative to that predicted by spin-spin only. 
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To test the sensitivity of TTevent to the magnitude of the 
spin-orbit coupling we have arbitrarily multiplied Eq. 
(15) by a factor of two and recalculated the loss-rates. 
Although it is impossible to place unequivocal error 
bounds on our calculations of VE, it is unlikely that our 
error in estimating V^° is as much as a factor of two. 
Such a variation does give a reasonable bound to the 
possible effect of the coupling. In Fig. 13 we compare 
the rates for the SS-only calculation to those calculated 
using y^° and 2 X V^" added to V^^ This figure also 
summarizes the status of our current confidence in A'event 
for ^'Rb. Since we are not able to determine the 'S^g 
potential with sufficient accuracy to place any con- 
straint on the magnitude of IS^l', the rate coefficient is 
spanned by the range shown by the curve labeled "SS 
plus SO" in Fig. 13. The loss rate coefficient, 2Kg^^„t, 
lies between 0.4 X 10""cmVs and2.4 X 10""cmVs. If 
our calculated V^° should be erroneous, we still expect 
the loss rate coefficient to lie between 0.1 X 10"cmVs 
and 3.0 X 10 " cmVs. The lower bound is determined 
by the ' 'SS plus 2 X SO'' curve, and the upper bound by 
the "SS only" curve. It must also be remembered that 
this assessment is based on having a precise scattering 
length for the a^'S'^u potential. If the estimate of A| = 110 
flo supplied by the Texas/Eindhoven should be in error, 
then the rate coefficient will be modified accordingly. 

Fig. 13. Rate coefficient ^event versus I5'i2l^ as Co is varied for the 

X'2*g potential. The upper two curves are the same as in Fig. 10. The 

three curves indicate the uncertainty in ^event due to the uncertainty in 

the X'2*g potential and in the SO interaction. The three curves show 

three different cases of the strength of the second-order spin-orbit 

(SO) interaction: the upper curve has no SO interaction, the middle 

curve uses our calculated ah initio values, and the lower curve uses 

twice the calculated values. 

We wish to make one final point before we conclude 
our discussion of the spin-order effects. Figure 12 shows 
that y^° is about an order of magnitude larger for Cs2 
than for Rb2. In fact, the contribution to spin-relaxation 
of doubly spin-polarized Cs atoms from the second-or- 
der spin-orbit term will dominate that due to the spin- 
spin term. Model calculations for Cs suggest that spin- 
relaxation rates for Cs are insensitive to the singlet 
potential. This agrees with our result for Rb shown by 
the nearly horizontal curve labeled "SO only" in Fig. 
10. The spin-relaxation rate for Cs atoms is likely to be 
much larger than that for Rb atoms, but the actual value 
will still depend on the a^'S^u potential. 

6.    Conclusions: Assessment of Current 
Accuracy of Calculated Rb2 Loss Rates 

In conclusion, we have determined the uncertainty in 
the spin-relaxation rate coefficient for stretched state 
*'Rb atoms associated with uncertainties in the molecu- 
lar parameters which control the magnitude of the relax- 
ation cross section. The stretched state relaxation affects 
the lifetime of the experimentally observed ^'Rb con- 
densate [1,24]. The condensate described in [1] remains 
dilute enough that its lifetime, ignoring collision with 
background thermal atoms, is determined by the binary 
stretched state loss rates [24]. Ternary rates will become 
dominant in more dense condensates. 

Our calculations use the a ""Su or stretched state scat- 
tering length AI = 110 AQ as required by the experimen- 
tal photoassociation data for spin-polarized *'Rb atoms 
[16]. Our calculations show that the lack of experimen- 
tal knowledge of the X'St potential provides the largest 
source of uncertainty in determining the spin-relaxation 
rate coefficient. The i-wave entrance channel for colli- 
sion of the/a = 2 H-/b = 2 stretched state atoms only cou- 
ples very weakly to the two possible exit channels of the 
spin-relaxation process, which produce/a = 1 H-/b = 2 or 
/a = 1 -H/b = 1 separated atoms with increased kinetic 
energy. The uncertainty in spin-relaxation rate is associ- 
ated with the strength of mixing between the two com- 
ponents in these exit channels. We varied the inner wall 
of the X^Xt potential in order to determine the range of 
uncertainty. Our calculations show that the loss rate 
coefficient due to spin-relaxation, 2A'eve„,, is uncertain to 
about a factor of 6, lying in the range 0.4 X 10 '^ cmVs 
to 2.4 X 10 '^ cmVs. In a pure condensate the rate coef- 
ficient is simply K^^^i [18]. Doubly polarized Rb may 
have the smallest collisional loss rate coefficient of any 
the alkali species if the rate coefficient lies near the 
lower end of its estimated range. 

534 



Volume 101, Number 4, July-August 1996 

Journal of Research of the National Institute of Standards and Technology 

We have provided ab initio estimates for the second- 
order spin-orbit terms Vn'iR) which contribute to the 
effective spin-spin interaction. For the heavier alkali 
atoms these terms have an important effect on the spin 
relaxation rate. In *^Rb, the Vn'iR) terms causes a re- 
duction in the rate coefficient for the coUisional relax- 
ation of stretched state atoms throughout the possible 
parameter space for varying the X'SJ potential. The 
decrease ranges between a factor of 2 % and 20 %, 
depending on whether the rate coefficient lies near the 
lower or higher end of its range of uncertainty. Our 
calculations suggest that the contribution of the Vn'iR) 
terms to the spin-relaxation rate coefficient of stretched 
state Cs atoms will be much larger than that from the 
spin-spin dipole term. 

Our analysis points out a critical need for more pre- 
cise determinations of the X'SJ and a^'Su potentials for 
Rb2 and Cs2 and of the spin-coupling parameters. Exper- 
imental determination of Vn'iR) could be approached 
by precision spectroscopy on the fine and hyperfine 
structure of the a^Xl state. The quantum chemistry com- 
munity could provide more complete and accurate cal- 
culations of the second-order spin orbit interactions as a 
function of R. 
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